Drag index calculation

This particular forum is for everything related to F-16 Armament, fuel tanks, and other stores.
  • Author
  • Message
Offline

ilter79

Newbie

Newbie

  • Posts: 4
  • Joined: 07 Jan 2011, 22:53

Unread post07 Jan 2011, 22:58

Anybody knows how to calculate drag index of a store?
I have searched the web but could not find a solid definition or a calculation method. Looking for a document or a reference to find this.

Any help will be appreciated.
Offline

johnwill

Elite 2K

Elite 2K

  • Posts: 2187
  • Joined: 24 Mar 2007, 21:06
  • Location: Fort Worth, Texas

Unread post08 Jan 2011, 00:33

Drag index of a store is a shorthand way of estimating the drag of a store at a typical cruise mach number. The basic airplane has a drag index, and each piece of added equipment (pylons, tanks, bombs, pods, etc) had a drag index. When all the drag indexes (indicies??) are added, the complete configuration drag index is found.

The drag on a body is drag coefficient x dynamic pressure x reference area, or D = Cd x q X S. To get the total configuration drag, you could look up the Cd for each item (store, pylon, pod, basic airplane), look up the reference area for each item, calculate the drag on each item, than add all the drags together. A simpler way is to use the same reference area for all elements, add all the coefficients (drag indexes) together, and calculate the total drag.

There should be a list of store drag indexes somewhere in the stores TOs, but if you can't find it or if the store isn't listed, all is not lost.

A drag index for a clean F-16 is the drag coefficient at 0.8 mach using the reference area of the F-16 (300 sq. ft.). So what is a drag coefficient? Using a clean F-16 as an example, say the drag at 0.8 mach, sea level, is 8000 pounds.

D = Cd x q x S

so Cd = D / qS

D = 8000 lb
q at .8 sea level is 947 lb/ sq ft
S = 300 sq ft

so Cd = 0.0282

The basic airplane drag index would be 282, because it is more convenient to use whole numbers instead of all those decimal places.

To calculate a drag index for a store, first you have to find its drag coefficient based on it's cross section area. That information (Cd) may be difficult to find, but the manufacturer should be able to give it to you. If that fails, then use 0.15 for pointy store (Mk-82) or .20 for a blunt store (AGM-65) as a good estimate for Cd. Then calculate the Cd based on the F-16 reference area, 300 sq ft.

Cd (F-16 ref area) = Cd x (store cross section area / 300 sq ft). This value, after removing the 4 decimal places, is the store drag index.

Another way to estimate a store drag index is to find another store of similar shape, and use its drag index multiplied by the ratio of the store cross section areas. For example a Mk-84 and a Mk-82 have similar shapes. If you know the -84 drag index, (DI-84), you can estimate the DI-82 :

DI(82) = DI(84) x Area (82) / Area (84)

I apologize if I've gone into more detail than you wanted.
Offline

ilter79

Newbie

Newbie

  • Posts: 4
  • Joined: 07 Jan 2011, 22:53

Unread post08 Jan 2011, 09:49

Dear John,

Thank you very much for the valueable info. This is definitely very helpful.
I am going to use it, but would apreciate if you can direct me to a reference as well.
Offline

energo

Forum Veteran

Forum Veteran

  • Posts: 614
  • Joined: 09 Dec 2007, 14:06
  • Location: Oslo, Norway

Unread post08 Jan 2011, 17:32

Very interesting breakdown, John.

A few excerpts from a RAND paper on the issue.

B. Bolsøy
Oslo
Attachments
drag_index1.jpg
RAND. A Global Access Strategy for the U.S. Air Force (Shlapak, Stillion, Oliker, Charlick-Paley)
drag_index2.jpg
RAND. A Global Access Strategy for the U.S. Air Force (Shlapak, Stillion, Oliker, Charlick-Paley)
Offline

johnwill

Elite 2K

Elite 2K

  • Posts: 2187
  • Joined: 24 Mar 2007, 21:06
  • Location: Fort Worth, Texas

Unread post08 Jan 2011, 17:58

Thanks, Bjornar. I just found your earlier post of that reference in F-16.net with a Google search.

ilter79, Google "drag index" to get more references.
Offline

johnwill

Elite 2K

Elite 2K

  • Posts: 2187
  • Joined: 24 Mar 2007, 21:06
  • Location: Fort Worth, Texas

Unread post08 Jan 2011, 21:53

There is some interesting information in Table A4, F-16C. Compare the drag index for 2 - 370 tanks with 2 TERs, with 2 - CBU-87, and with a Lantirn pod. You will see that they all have about the same drag. Those tanks must really be slick.
Offline

ilter79

Newbie

Newbie

  • Posts: 4
  • Joined: 07 Jan 2011, 22:53

Unread post09 Jan 2011, 20:04

Thank you all for the guidence...
Offline

Roscoe

Elite 1K

Elite 1K

  • Posts: 1338
  • Joined: 29 Jun 2004, 20:14
  • Location: Las Vegas

Unread post10 Jan 2011, 01:07

Drag index is of course referenced to the wingspan of the aircraft on which it is being carried, so the drag index of a MK-82 on an Eagle will be different than on a Viper. This was mentioned but not emphasized.
Roscoe
F-16 Program Manager
USAF Test Pilot School 92A

"It's time to get medieval, I'm goin' in for guns" - Dos Gringos
Offline

johnwill

Elite 2K

Elite 2K

  • Posts: 2187
  • Joined: 24 Mar 2007, 21:06
  • Location: Fort Worth, Texas

Unread post10 Jan 2011, 02:41

Drag coefficients, like all force coefficients, are referenced to wing area. So a store drag index is also referenced to wing area. Moment coefficients are referenced to wing area x MAC. But you are correct about a store having a different drag index for different airplanes.
Offline

Roscoe

Elite 1K

Elite 1K

  • Posts: 1338
  • Joined: 29 Jun 2004, 20:14
  • Location: Las Vegas

Unread post10 Jan 2011, 05:21

Of course wing area and not wing span. Given the time I typed that my brain must have been in neutral.
Roscoe
F-16 Program Manager
USAF Test Pilot School 92A

"It's time to get medieval, I'm goin' in for guns" - Dos Gringos
Offline

Raptor_claw

Senior member

Senior member

  • Posts: 322
  • Joined: 29 Sep 2006, 07:11

Unread post10 Jan 2011, 06:12

Moment coefficients are referenced to wing area x MAC...

My turn to be Mr. NitPick... This is, of course, correct, but only for the pitch moment coefficient (Cm). The lat/dir terms (Cl/Cn) are referenced to wing area * b (b=span).
Offline

johnwill

Elite 2K

Elite 2K

  • Posts: 2187
  • Joined: 24 Mar 2007, 21:06
  • Location: Fort Worth, Texas

Unread post10 Jan 2011, 06:20

Thanks, Raptor claw. Learn something every day. Any idea why b is used for Cl/Cn instead of MAC?
Offline

Raptor_claw

Senior member

Senior member

  • Posts: 322
  • Joined: 29 Sep 2006, 07:11

Unread post10 Jan 2011, 06:31

johnwill wrote:Thanks, Raptor claw. Learn something every day. Any idea why b is used for Cl/Cn instead of MAC?

Not off the top of my head. Like a lot of stuff, it's just always been that way - somebody way-back-when decided it made sense, and it stuck.
Offline

Roscoe

Elite 1K

Elite 1K

  • Posts: 1338
  • Joined: 29 Jun 2004, 20:14
  • Location: Las Vegas

Unread post11 Jan 2011, 15:39

Lateral directional coefficients are more a function of wingspan than mean aerodynamic chord. It makes more sense that way.
Roscoe
F-16 Program Manager
USAF Test Pilot School 92A

"It's time to get medieval, I'm goin' in for guns" - Dos Gringos
Offline

ilter79

Newbie

Newbie

  • Posts: 4
  • Joined: 07 Jan 2011, 22:53

Unread post11 Jan 2011, 16:27

John,
After thinking for a while, I remembered that stores have different drag indices at different stations on the wing. The formula above does not cover the station effect.
Also the drag in these calculations should be profile drag according to a source I read; do you agree?
Next

Return to F-16 Armament & Stores

Who is online

Users browsing this forum: No registered users and 3 guests