Search found 23 matches: +Venable

Return to advanced search

  • Author
  • Message
marsavian

Re: New Heritage Foundation Report

15 May 2019, 01:25

Recommendations

The U.S. Congress should fund and authorize the Air Force to purchase 72 F-35As in the National Defense Authorization Act for 2020, and 360 over the Five-Year Defense Plan (FYDP).

The Department of Defense should approve full-rate production of the F-35A, and move to field the F-35A as rapidly as possible. The DOD should forego the acquisition of fourth-generation F-15EX fighters, and acquire 72 F-35As in 2020, while also funding the associated spare parts accounts.


The F-35 Joint Program Office should:

Repair the visual challenges and conflicts within the HMDS as an urgent operational requirement.

Elevate the requirement for and adequately fund a robust embedded training suite of capabilities within the F-35. That suite should include user-friendly software that has a selection of both canned (pre-programmed) and tailorable mission scenarios, and a level of fidelity that allows multi-ship F-35A packages to find, fix, sort, and target layered SAM systems that are pulled from the jet’s threat library.

Install concurrent software updates for the F-35A simulator in line with those made to the aircraft.

More rapidly improve F-35A Distributed Mission Training to increase the number of simulators connected through the Distributed Mission Training System to the standard number of aircraft in an LFE package.

Improve user transparency of its global parts supply system for the F-35A, accelerate the delivery of those parts, provide users with visibility of those parts as they are in transit, and bring delivery schedules for those parts up to modern-day global-supply-chain-management standards.

Increase the number of personnel dedicated to resolving maintenance action requests (ARs) and the number of teams it makes available for on-site troubleshooting.

Increase parts availability and maintenance visibility into parts sourcing, improve scheduling, and rapidly increase the joint technical data available to maintenance personnel.


The Air Force should:

Increase the average number of sorties for line fighter pilot wingmen, flight leads, and instructors to a minimum of three flights in the aircraft a week to grow or sustain their skill sets, as well as grow the F-35A experience
level with the CAF. In order to accomplish that, it should institute aggressive flying-hour contracts in all wings operating at or above IOC to grow the breadth of fighter and maintenance experience as rapidly as possible.

Segregate the costs associated with overloading unit maintenance manning for the sake of expediting the spin-up of future F-35A bed-down locations, and exclude those costs from F-35A O&M cost calculations.


Conclusion

The Joint Strike Fighter program has endured its share of growing pains, but the F-35A is now fully operational, and those flying the jet have complete confidence in its ability to operate in and around the most intense threat environments in the world. While it will take several more years before the jet, its simulators, maintenance, and logistical support fully realize their potential, the technical issues that limited the early operational employment of the JSF have been overcome, and there is no doubt in the minds of those flying the F-35A at Hill AFB that, even now, this is the most dominant and lethal multi-role weapons system in the world. It is time to field this game-changing weapons system as rapidly as possible.

—John Venable, a graduate of the USAF Fighter
Weapons Instructor Course with more than 3,300 hours
in the F-16C, is Senior Research Fellow in the Center for
National Defense, of the Kathryn and Shelby Cullom
Davis Institute for National Security and Foreign Policy,
at The Heritage Foundation.
blain

New Heritage Foundation Report

15 May 2019, 00:09

AF pilots say they want the F-35As. Former Boeing executive wants the AF to buy a fighter from Boeing. John Venable is out with a new report. He suggests ramping up production to 72 aircraft per year.

https://www.heritage.org/sites/default/ ... BG3406.pdf
spazsinbad

Re: Radar jamming ability

15 Feb 2019, 21:35

NATIONAL INTEREST are very lazy - they republish a lot of articles - usually not positive toward the F-35 so that OLD problems appear new to the uninformed. The article cited above was first published in 2016. Searching for VENABLE....

NOW ATTACHED 4 page PDF of ARTICLE: Air Force F-35 Proponents Strike Back at Critics Sep 2016
http://www.nationaldefensemagazine.org/ ... itics.aspx

search.php?keywords=Venable&terms=all&author=&fid%5B%5D=65&sc=1&sf=all&sr=posts&sk=t&sd=d&st=0&ch=-1&t=0&submit=Search

This URL may take readers to the original article however I don't have the time to compare the pair:

At end of OP link above 1st PUBLISHED: https://www.dailysignal.com/2016/08/05/ ... er-pilots/

viewtopic.php?f=22&t=52189&p=350857&hilit=Venable#p350857
from URL above my fav: "...In air combat mode, when the “world is swirling around the pilot,” who may be turning 15 to 30 degrees per second with many aircraft flying around in different directions, keeping track of just the friendly jets is a big challenge, Venable said. “What this aircraft does is to look in any direction and see who is there and you’ll be able to tell who is a good guy and who is a bad guy,” he [VENABLE?] said....."


And on to: viewtopic.php?f=22&t=52189&p=349935&hilit=Venable#p349935
for:
https://www.washingtonexaminer.com/pilo ... new-report [04 AUG 2016]

Re: Fast Five With U.S. Air Force Chief Gen. Dave Goldfein

09 Feb 2019, 06:05

The Air Force Wants to Buy More F-15X Jets, and It’s a Huge Mistake
08 Feb 2019 John Venable

"1 Last Friday, the Air Force announced plans to buy Boeing’s F-15X, based on the jet’s capabilities and comparatively low costs when stacked against the F-35A....

...3 In the unforgiving world of conflict, investments have to deliver viable combat capability, and in that regard the F-15X falls well short of the mark.

...The Air Force needs to acquire at least 72 fighters a year just to offset jets that are aging out. The largest number of F-35s it plans to purchase in any given year is 60, starting in 2026, and there’s no question the service needs to buy more jets. So does it make sense for the USAF to buy the F-15X?...

...At first blush, it’s hard to see how the F-15X could be cheaper — but for just argument’s sake, let’s say the Air Force could both buy and operate the F-15X below the price of the F-35. Are the capabilities of the F-15X even worthy of the investment?...

...As envisioned, the F-15X will include all those improvements [detailed earlier], while carrying a veritable arsenal of air-to-ground and air-to-air munitions including up to 22 air-to-air missiles. With both conformal and external drop tanks, the jet has a range of 600 miles, equaling that of an F-35A.

Many, including Air Force Chief of Staff Gen. David L. Goldfein, talk of the F-15X as a replacement for the Air Force’s F-15C. Unfortunately, the added weight and drag of the modifications that give the F-15X its superb range and suite of capabilities have also caused it to lose the agile handling characteristics and favorable thrust-to-weight ratio associated with its older, air superiority sibling.

The F-15X is an updated version of the F-15E, and six active duty pilots I have interviewed who have flown both that jet and the F-35 state the former could never survive in a modern day, high-threat environment, and that it would be soundly defeated by an F-35 in almost any type of air-to-air engagement. That strongly suggests buying the F-15X in lieu of the F-35 would be a very poor choice....

...the Air Force needs to buy 72 fighters a year just to keep pace with aircraft retirements, not to mention address the need to grow new squadrons as Air Force Secretary Heather Wilson has said is required. For the reasons described above, Congress should be very skeptical of plans to buy a legacy fighter such as the F-15X and, at the very least, debate the idea of expanding F-35 production capacity to meet the needs of the Air Force. The cost of any new fighter we acquire should allow us to take the fight to the enemy on our terms for the next quarter-century."

Source: https://www.heritage.org/defense/commen ... ge-mistake
spazsinbad

Re: Most agile F-35?

04 Oct 2018, 03:36

Does anyone have a quote how the F-35 can keep track of baddies within 10 miles or so? TIA. Bin Lookin' No Find - but...
Air Force F-35 Proponents Strike Back at Critics
Sep 2016 Stew Magnuson

"...Harrigian [former F-22 pilot, Maj. Gen. Jeff Harrigian] said: “The F-35 [helmet’s] tremendous capability is really a first step toward providing that asymmetric advantage to the pilot with that situational awareness it provides for communications, navigation and identification capabilities.” In air combat mode, when the “world is swirling around the pilot,” who may be turning 15 to 30 degrees per second with many aircraft flying around in different directions, keeping track of just the friendly jets is a big challenge, Venable [John Venable, a former F-16 pilot with more than 3,000 hours of flying time, who is now a senior research fellow at the Heritage Foundation] said. “What this aircraft does is to look in any direction and see who is there and you’ll be able to tell who is a good guy and who is a bad guy,” he said...."

Source: http://www.nationaldefensemagazine.org/ ... itics.aspx
steve2267

Re: Most agile F-35?

01 Oct 2018, 14:59

zero-one wrote:Thats not detrimental tho, the F-35 may not offer the same raw acceleration, energy bleed rate and sustained G rate as the Viper, but it makes up for it with better high alpha, slow speed nose authority and respectable acceleration approaching Viper levels.


I'm slightly confused here. Do I note a hint of disappointment that an airshow clean F-16 may turn better than an F-35?

Without aircraft performance numbers and charts from the pilot's manual, or E-M diagrams to overlay and compare, and without first-hand-knowledge piloting Lightnings and Vipers, we are left to point to quotes, articles and the like.

I believe we have all seen the quotes that the F-35 is "like a Hornet with four motors!" or "like a Hornet with a turbo" and that it "out-accelerates a Block 50 F-16C" or "it's acceleration is like an F-16C Block 50 with a single centerline tank." In the illustrations below, several 4th gen jets devoid of stores -- they've been jettisoned, are compared to the F-35 with full fuel and internal armament, and even in this comparison, F-16 pilots state the F-35 regains energy better than the Viper... so there is that "datapoint." So from a burning perspective, the F-35 seems to be at least on par with an F-16.

And even with the pre-3F CLAWS with it's 7g flight restrictions etc etc, F-16 pilots rated the F-35 better at slow speed responsiveness and Stack/scissors performance. There is also an F-16C Weapons School Graduate and instructor pilot raving about 28°/sec pedal turns and eye watering performance the 3F CLAWS-restrictions-removed aircraft will have. But what does he know? -- he's only a patch wearer after all.

Back to the future... an oldie but goodie from John Venable:

Operational Assessment of the F-35A Argues for Full Program Procurement and Concurrent Development Process
by John Venable August 4, 2016

<...snip...>

The energy and maneuverability (Em) performance of fourth-generation fighters is very often exaggerated by the idea that these fighters fly combat missions in absolutely clean “airshow” configurations. No fourth-generation jet in the U.S. inventory (or any other) goes into combat that way, and most will carry significant external stores (munitions, fuel tanks, and targeting pods) in order to accomplish their mission. When pilots know they are about to enter a dogfight situation requiring the best Em their jets can deliver, they will jettison fuel tanks and unexpended bombs, but almost every pod, rack,[21] or missile rail is permanently affixed,[22] adding significant un-jettisonable weight, drag, and RCS.

...

A Direct Comparison. Thirty-one experienced pilots currently flying the F-35A were asked to rate the energy and maneuvering characteristics of their previous fourth-generation fighters in a combat configuration throughout the dogfighting maneuver envelope in a combat configuration[23] after jettisoning their external stores. They were then asked to rate the performance of the F-35A using the same scale, with fuel and internal munition loads associated with a combat loadout[24] under their current G and CLAW restrictions.[25]

...

Each pilot was then asked to select which fighter he would rather fly in combat if he were to face a clone flying the other jet in six different air-to-air situations. (See Chart 2.) If the pilot selected an F-15C in a short-range setup, for example, he felt he could outperform a pilot of equal abilities in the F-35A. Pilots selected the F-35A 100 percent of the time in beyond-visual-range situations and over 80 percent of dogfighting situations where energy and maneuverability are critical to success.

Venable - Chart 1 - How Pilots Rate Fighter Jet Maneuverbility.PNG

Venable - Chart 2 - Pilots prefer Flying F-35A.PNG


The F-35A was not designed to be an air superiority fighter, but the pilots interviewed conveyed the picture of a jet that will more than hold its own in that environmenteven with its current G and maneuver restrictions. In the words of an F-16C Weapons School Graduate and instructor pilot now flying the F-35A, “Even pre-IOC,[26] this jet has exceeded pilot expectations for dissimilar combat. (It is) G-limited now, but even with that, the pedal turns[27] are incredible and deliver a constant 28 degrees/second. When they open up the CLAW, and remove the (7) G-restrictions, this jet will be eye watering.”[28]

...

https://www.heritage.org/defense/report/operational-assessment-the-f-35a-argues-full-program-procurement-and-concurrent


Yes, they did rate the Viper as having a (somewhat?) better sustained turn rate, and a (marginally better) instantaneous turn rate. So if turning and burning with only a gun is your thing, then by all means, take the F-16... the Viper is still an outstanding aircraft.

If on the other hand, you want undefeatable, eye-watering performance with a disappear switch and a Gods-eye-view tossed in... the F-35 is your ride.
steve2267

Re: Favorite F-35 Quotes

25 Aug 2018, 20:24

Another "eye watering" quote, but not from Gen. Pleus. Rather this one by a patch wearer, a USAF Fighter Weapons School grad, which, IMO, makes it that much more impressive.

Operational Assessment of the F-35A Argues for Full Program Procurement and Concurrent Development Process
by John Venable August 4, 2016, The Heritage Foundation

...

The F-35A was not designed to be an air superiority fighter, but the pilots interviewed conveyed the picture of a jet that will more than hold its own in that environment—even with its current G and maneuver restrictions. In the words of an F-16C Weapons School Graduate and instructor pilot now flying the F-35A, “Even pre-IOC,[26] this jet has exceeded pilot expectations for dissimilar combat. (It is) G-limited now, but even with that, the pedal turns[27] are incredible and deliver a constant 28 degrees/second. When they open up the CLAW, and remove the (7) G-restrictions, this jet will be eye watering.”[28]

...

[28] Personal interview with former F-16C pilot currently flying the F-35A, April 18, 2016.

https://www.heritage.org/defense/report/operational-assessment-the-f-35a-argues-full-program-procurement-and-concurrent

Re: Taiwan still hoping to buy F-35 fighters from U.S.

27 Mar 2018, 20:13

As boring as watching batshit dry; the usual suspects or whomever whatever - for & agin - sale of F-35Bs to Taiwan.
F-35 Sale to Taiwan Not Worth the ‘Risk,’ Experts Warn
26 Mar 2018 Marcus Weisgerber

"...while experts say the F-35B is ideally suited for Taiwan’s military, they warn that it could pose more of a risk than a deterrent. You would be upping the ante significantly not just between the Taiwanese and Chinese, but between the United States and China,” said John “JV” Venable, a retired fighter pilot who is now an analyst with the Heritage Foundation. “I’m not sure that’s worth the risk for the United States.”...

...Then there are export control concerns surrounding the F-35’s advanced technology and the logistics network each plane feeds data into. “You tap into that and you’ve got access to a whole lot more information than logistics,” Venable said of the computer network known as ALIS. “There is word [on the] street that it would be very hard for the Taiwanese to hold the secrets — not because they would give them up willingly, but because of the infiltration of the Chinese into their system.”

And the plane is not cheap to buy, fly, and maintain. An F-35B, the version pushed by Cornyn and Inhofe, currently costs about $123 million each. “Do the Taiwanese have the wherewithal to buy these planes?” asked Richard Aboulafia, vice president for analysis for the Teal Group, a Virginia-based consulting firm. If Taiwan could only afford a small batch of F-35s, it would be better off buying high-end air defenses, Venable said.

But from a military perspective, experts say the F-35 is perfectly suited for flying in Taiwan. The plane can take off from short runways and land vertically like a helicopter. That would be important in a war with China, which would likely bomb Taiwan’s airfields preventing traditional jets from taking off. Pilots consider the F-35B “a very simple airplane to fly” compared to the Harrier, an old fighter jet that can take off and land vertically, Venable said.

“The survivability of the F-35B, and modern long-range sensors, could help Taiwan intercept Chinese missiles, promoting deterrence well into the next decade,” the senators wrote. “The F-35B would not only provide a modern fifth-generation fighter but would also bolster their capabilities in next-generation warfare.”...

Source: http://www.defenseone.com/politics/2018 ... rn/146970/
spazsinbad

Re: Why is the F-35 replacing the A-10?

01 Mar 2018, 02:58

The F-35 may be heading into its faceoff with the A-10 this April
01 Mar 2018 Valerie Insinna

"WASHINGTON — Before moving into operational testing, the joint strike fighter will have to prove its mettle as a close-air support plane to the Pentagon’s independent testers, the F-35 program head said Wednesday. This April, the Defense Department’s director of operational test and evaluation will scrutinize the F-35’s close-air support and reconnaissance capabilities during a series of flights at Edwards Air Force Base and the Point Mugu Sea Range in California, said Vice Adm. Mat Winter, who leads the F-35 Joint Program Office.

Winter said he isn’t sure whether the close-air support assessment In April — the second increment of tests ahead of this September’s initial operational test and evaluation, or IOT&E — would include the much-hyped F-35 versus A-10 flyoff. But it’s coming soon....

...“Just like every other fourth- or four-plus generation fighter, [the A-10] would not likely survive a single mission flown against the anti-access/area denial threats of today. That is where the F-35 was designed to operate,” John Venable, a former F-16 pilot and defense expert at the Heritage Foundation, wrote in an op-ed for National Defense Magazine last year....

...The full “increment two” test plan has not yet been approved by Robert Behler, the Pentagon’s director of operational test and evaluation. However, Winter said the scope of the assessment will include weapons drops, engagement with forward air controllers who call in air strikes and armed reconnaissance missions.

The DOT&E Office has already wrapped up the first increment of pre-IOT&E tests, which looked at the F-35’s performance in cold weather environments. It evaluated “the suitability and effectiveness” of a series of F-35 alert launches that took place in late January through early February at Eielson Air Force Base in Alaska.

After the close-air support assessment has wrapped up, the data from both increments of tests will be formally reviewed by DOT&E before the aircraft moves into operational tests this fall. Winter expects IOT&E to wrap up in May 2019."

Source: https://www.defensenews.com/air/2018/02 ... his-april/

Re: F-35 Is Newest Thorn In North Korea’s Side

05 Feb 2018, 16:17

F-35 put through its paces in first Asia-Pacific deployment [Long Post Best Read at Source]
06 Feb 2018 Valerie Insinna

"WASHINGTON — Look at the skies above Kadena Air Base on the Japanese island of Okinawa and twice daily you’ll get a glimpse of U.S. Air Force F-35 fighter jets taking off, only to land several hours later. Watch the base itself and you’ll see maintainers working round the clock to ensure the service’s newest fighter jets are ready to go....

...“We’re approaching 1,000 flight hours and 500 sorties, we’ll probably have that here in the next week and a half or two weeks,” Master Sgt. Brian Sarafin, F-35A production superintendent for the 34th Aircraft Maintenance Unit, told Defense News in a Jan. 24 interview. On any given day, the 12 F-35s at Kadena could be expected to make anywhere from 12 to 14 total sorties, meaning every plane must be quickly inspected and repaired so it is ready to fly....

...About 20 F-35A pilots relocated to Okinawa, and they fly about two to three times a week, said Capt. Ryan Huber, the 34th Fighter Squadron’s flight commander. Most of those hours are spent training, but pilots also participate in exercises like Vigilant Ace, held in South Korea in December, where operators got to practice skills such as enemy infiltration and precision strike with U.S. military and South Korean jets....

...The Air Force’s data sponge...
...the F-35s operating in Japan — the Air Force’s “A” models at Kadena as well as the Marine Corps’ F-35Bs, which will deployed aboard the amphibious assault ship Wasp this year — could still play a vital role in enhancing the U.S. military’s understanding of North Korea’s own military activities, especially given the jet’s classified electronic warfare package and data fusion capability that brings together imagery from the aircraft’s myriad active and passive sensors.

“I don’t know if it’s actually monitoring the television channels that people are watching in their homes or if, as soon of they get airborne, they start doing a really good assessment of what’s happening in the North,” Venable said. “When you have the guys out on the Wasp and they’re flying, if they’re flying 100 miles off the coast of North Korea, you can bet your bottom dollar that they’re scooping up gobs and gobs of information of what’s going on inside the peninsula and then the northern side of the peninsula. And the same thing is going on with the [’A’ models].”

...Go ask ALIS
Although agencies like the Government Accountability Office and the Pentagon’s independent weapons tester have criticized the F-35 program for spare parts shortages and aircraft availability problems, Sarafin said the 34th hasn’t run into any major complications during its deployment in Japan.

“We haven’t had major surprises since we’ve been here. The jets have been performing pretty well, and we have not had many maintenance nondeliveries. When we first got here, we went over 130 sorties without dropping a single one, which was great for us and kind of unheard of for a new platform like that,” he said.

So far, the most critical challenge on the maintenance side has been setting up the aircraft’s Autonomic Logistics Information System, which allows operators to order spare parts, walk through maintenance procedures and plan missions. The 34th is using the latest version, ALIS 2.0.2.4, during this deployment.

“It’s much quicker. We have a lot of access to all the data we need on the aircraft,” Sarafin said. “Is it a perfect system? No, but it’s much better than it has been in the past few years.”

During the first days of the deployment, maintenance crews had difficulty readying the supply system and getting parts delivered on time due to customs hiccups. But “it’s been hashed out fairly quickly,” said Sarafin, adding that the squadron did not lose any sorties due to a lack of parts. “We’re operating here almost as efficiently as we do at home station now.”

One of the new features of ALIS 2.0.2 allows the user to view and monitor data from the aircraft’s Pratt & Whitney F135 engine, which was developed specifically for the F-35. Before getting the current ALIS version, maintainers would have to download the engine data, burn it to a disc and then hand it over to a Pratt & Whitney employee, who would look at the data and ensure that the engine was safe to fly the next sortie.

“It was a time-consuming process. Sometimes you’re talking two to four hours to get the data, which could then delay your time and [decrease] the possibility of having an aircraft ready the next year,” he said. Now, because engine data flows through ALIS, it can be downloaded in five to ten minutes after the plane lands."

Source: https://www.defensenews.com/digital-sho ... eployment/
talkitron

Re: F-35 Lightning II vs Dassault Rafale

14 Sep 2017, 16:28

That John Venable article was among the best I have read on the F-35. There was no shocking details but it was serious and even had original survey data. I will look for more writing by Venable. Thanks for posting.
neptune

Re: Operational Assessment of the F-35A

28 Apr 2017, 20:37

spazsinbad wrote:This same report was mentioned 5th Aug 2016 here then there are EIGHT pages of comments subsequently:
viewtopic.php?f=22&t=52189&p=349935&hilit=Venable#p349935

'SWP' put up a nice video:

viewtopic.php?f=22&t=52189&hilit=Venable&start=90



How Pilots Rate Fighter Jet Maneuverability
http://www.heritage.org/sites/default/f ... -1-825.jpg


....Hey Spaz, how about another link, that one took me to some David Axe crap...hmmm, we all keep trying, thanks for the help!
:)
spazsinbad

Re: Operational Assessment of the F-35A

28 Apr 2017, 18:11

This same report was mentioned 5th Aug 2016 here then there are EIGHT pages of comments subsequently:
viewtopic.php?f=22&t=52189&p=349935&hilit=Venable#p349935

'SWP' put up a nice video:

viewtopic.php?f=22&t=52189&hilit=Venable&start=90



How Pilots Rate Fighter Jet Maneuverability
http://www.heritage.org/sites/default/f ... -1-825.jpg
neptune

Operational Assessment of the F-35A

28 Apr 2017, 17:53

http://www.heritage.org/defense/report/ ... concurrent

Operational Assessment of the F-35A Argues for Full Program Procurement and Concurrent Development Process


John Venable
August 4, 2016

This paper will discuss benchmarks for classic fighter technology, maneuverability, stealth, and tactics. It will examine the F-35’s faculties and compare them with the technology, performance, and cost of the generation of multirole fighters[1] that precedes it.

That examination will reinforce the jet’s faculties for the air-to-ground missions of all three F-35 variants:
F-35A Conventional Takeoff and Land (Air Force);
F-35B Short Takeoff/Vertical Landing (Marine Corps);
F-35C Aircraft Carrier-based (Navy).

All three are designed for different basing environments that affect the way each variant performs in the air combat arena. This paper will explore the handling characteristics and air-to-air performance of the Air Force version of the jet, based on the opinions of 31 experienced U.S. Air Force fighter pilots currently flying the Lightning II. Their depth of experience in front-line, fourth-generation fighters, as well as with the F-35A, delivers unrivaled perspective and confidence in this extraordinary fighter.

Evolution of Fighter Technology

The Department of Defense (DoD) has pushed the defense industry into a continuing quest for more speed, altitude, turning performance, and lethality of munitions—a quest that has defined the jet age. The lineage of jet fighters is generally classified in terms of five generations that are separated by significant leaps in the qualities of speed, weaponry, maneuverability, the ability to detect and engage targets, and/or the ability to mask detection by the opposition.

Global competitors are currently operating at near parity in fighter speed, as well as in range and lethality of weaponry. While follow-on generations of fighters may joust again in those two areas, this paper will concentrate on the remaining three categories: energy and maneuverability, detection of the enemy, and the ability to mask detection by the opposition.

Energy and Maneuverability (Em)

The ability to out accelerate, out climb, and outturn opposing aircraft has been a part of air combat since its inception. Jet engines were introduced in the 1940s, allowing the first generation of jet fighters to climb higher and fly faster than piston-engine aircraft. However, once those jets got in a turning engagement—or dogfight—their additional weight, coupled with the low thrust available from their archaic jet engines, was no more a match for the G-loads of aerial combat than their piston-engined predecessors were. As engine technology increased, so did aircraft weight, and while many second-generation fighters could fly faster than Mach 1, both first- and second-generation fighters were underpowered sports cars under the G-loading of a turning fight.

With the advent of longer-range missiles, beyond-visual-range (BVR) tactics came about that allowed fighters to engage adversaries before they merged, forgoing the need in many minds for turning fights. America entered the Vietnam War believing that the age of the missile was at hand, and many senior leaders thought the requirement for heady maneuvering and gun-toting aircraft was behind us. It wasn’t.

F-4s were the first production fighters capable of Mach 2, but when paired against a poorly trained Vietnamese adversary flying often dated aircraft, the kill ratio was almost one-to-one in the early stages of the war. The services had removed much of the air-to-air dogfight training that pilots received, and the results were telling: The United States lost almost one fighter for every North Vietnamese kill that it claimed.

The U.S. Air Force and Navy moved immediately to hone air-to-air dogfighting skills and tactics that would change the kill-to-loss ratios considerably. By the end of the war in Vietnam, the need for skilled pilots and well-developed tactics was a lesson (re)learned. That lesson extended into the next series of fighter aircraft designs, which were centered on the ability to sustain high turn rates, requiring engines that delivered markedly higher thrust. Technological improvements, material, and weight reduction techniques delivered a fourth generation of aircraft with thrust-to-weight ratios that approached or exceeded one-to-one[2] in clean (non-combat) configurations.

Technology will continue to improve the ability of the United States to defeat adversaries’ BVR. However, just as soon as it banks on the idea that capability removes the need for high energy and maneuverability, thinking enemies will respond. They will test the Air Force’s mettle with counter tactics and technologies that cause us to endure a fate similar to the one we endured during Vietnam until they can catch up technologically.

Detecting Enemy Fighters

Fighters use many different methods to detect other aircraft. Passive detection systems are becoming more and more prevalent, but the technology used most commonly to detect enemy aircraft is a fighter’s onboard radar. Radar has been around since the opening stages of World War II, but the first radars mounted in jet fighters were very limited in their capability.

Radar.

First-generation jet fighters had no real radar detection capability. The F-86, made famous during the Korean War, relied on ground-based radars and controllers to guide pilots to a point where they could pick the targets up visually—a process known as Ground Controlled Intercept (GCI). Onboard radars were capable of providing precise range data for computed gunsights, but little more.

Second-generation air-to-air fighters were designed to intercept high-flying nuclear bombers, and the best of them could detect and lock onto fighter-sized targets at 15 miles. Detection ranges for third-generation F-4s and Russian MIG 21s were a bit longer and included the capability to fire radar-guided missiles, but both relied heavily on GCI to find the enemy, and most successful gun or missile engagements were tail aspect shots: attacking from behind an aircraft.

Fighters enjoyed significant improvements in detection range and clutter[3] resolution with the fourth generation. Aircraft like the F-15C realized detection ranges on fighter-sized targets in excess of 50 miles and could readily engage aircraft flying well below their altitudes for a true look-down-shoot-down capability.

In the late 1990s, Active Electronically Scanned Array (AESA) radars entered the fight, delivering contact ranges in excess of 100 miles. Fighters so equipped have a huge advantage over those with dated pulse-Doppler radars, and when mated with a medium-range air-to-air missile, they deliver quite a leap in capability. Having an AESA radar alone does not elevate a fighter to the fifth generation, but fourth-generation fighters that possess it along with one or two other improvements are often referred to as four-plus-generation fighters. Among “other” improvements, some four-plus-generation fighters possess unique passive detection capabilities.

Passive Detection.

Aircraft of all types emit several different types of detectable noise. It makes sense that without care, radar emissions from an aircraft can be detected by opposing aircraft at least as far away from the source as the transmitting aircraft can detect enemy fighters. The Russian AA-10E Alamo missile is designed to exploit this by using passive radar homing to follow radar emissions from enemy fighters all the way to the source without relying on active radar returns from the firing aircraft from launch to impact.[4] What this implies is that the launching Russian fighter has at least a limited ability to “see” and launch on opposing fighters without emitting any radar emissions of its own.

The other sources of detectable noise are less well known, but with the radar example, they begin to come into view.[5] Two-way radios, some navigational aids, data-links, engine or airframe heat—anything that emits radio, radar, heat, or traceable light can be used by enemy radar sites, fighters, and surface-to-air-missiles (SAMs) to find, fix, and target aircraft. The three factors that determine the ability (and advantage) that one fighter has to detect another in any one of those arenas are:

Sensor sophistication and sensitivity,
Sensor fusion of detection sub-systems into a display that pilots can rapidly understand and digest, and
Stealth and the target’s ability to mask its own emissions or returns.

Sensors.

Modern fighters have several sensors and sub-systems at their disposal. In addition to radar, they include radar warning receivers (RWR); Infra-Red Search and Track (IRST) systems; and passive coherent location systems (PCLS).

Radar warning receivers were developed following the first several U.S. aircraft losses to Soviet-made SA-2 missile systems in Vietnam. Pilots could see the missiles respond to the movements of targeted aircraft, so engineers designed a detection system for the radars that guided those missiles to their targets. They mounted archaic-radar warning systems on fighter aircraft and displays inside their cockpits. Once the systems were on board, aircrews developed tactics that would allow appropriately warned pilots to outmaneuver the missiles.

Initially, RWRs were directional and would merely tell pilots which clock position they should search for the inbound missile. Over time, engineers developed methods for estimating the range of known threats, and pilots and engineers working together developed methods to triangulate and bomb the location of SAMs. Anti-radiation missiles were developed, and the pairing was given to SAM-hunting units designated as Wild Weasels. That capability improved with the HARM[6] Targeting System (HTS) of the fourth-generation F-16CJ.

The HTS allows F-16CJs working in flights of two or more jets to triangulate and fire on SAM systems more rapidly by linking and processing the collective data of the formation of jets. The target location solutions that the HTS offers are so precise and timely that missile systems can frequently find and destroy enemy SAMs even after the sites shut down their radar emitters on word of inbound missiles. The HTS gives its pilots markedly elevated levels of situational awareness from both SAM and air-to-air threats, but it comes at a cost. The HTS “pod” is an external, un-jettisonable[7] modification to the F
F-16 that adds weight and a significant amount of drag to the jet’s sleek lines.

Fourth-generation F-15Cs are now being modified for a next-generation electronic warfare suite called Eagle Passive/Active Warning Survivability System (EPAWSS). EPAWSS reportedly will give the Eagle sophisticated jamming, geolocation, target-identification, infrared threat-detection, and decoy capabilities[8]—a modification that is postulated to give the F-15C several fifth-generation faculties.[9]

The details of the F-35 threat-detection system or RWR are classified, but interviews of pilots who have flown both the F-16CJ and the F-35 state that a single F-35 has the ability to locate, identify, and triangulate emitter locations faster and with greater precision than can a flight of three F-16CJs that surround the emitter.[10] The associated systems work against air-to-air threats just as well and are all internal to the F-35, forgoing the need for external pods or stores that would slow down the jet or give it a larger radar cross section (RCS).[11] This system alone helps to make all three versions of the F-35 standouts in the air-to-ground mission sets of the multirole fighter community.

Infra-red Search and Track systems were developed for fourth-generation platforms. IRST systems search and even scan the forward hemisphere of equipped fighters for the infrared emissions of threat aircraft. Some systems incorporate a magnified optical sight system to help pilots visually identify target aircraft at significant distances. The Eurofighter Typhoon’s PIRATE IRST reportedly can detect unshielded, subsonic fighters approaching at high aspect (head on) at 30 nautical miles.[12] These systems possess equipment and algorithms that can provide the range to detected threats but are significantly hampered by weather and atmospheric conditions.

The F-35 Distributed Aperture System (DAS) is an IRST system with six ports that stare simultaneously in all directions. The DAS system is projected within and slaved to the Helmet Mounted Display (HMD), allowing pilots to perform near-spherical visual scans even when looking “through” the F-35 with 20/40 clarity, day or night. The DAS is enhanced by the Electro-Optical Targeting System (EOTS) that provides precision air-to-air scan and track, as well as a solid air-to-surface targeting capability. EOTS retains the aircraft’s stealth and is linked to the jet’s integrated central computer through a high-speed fiber-optic interface.

The two IR systems will automatically detect and display threats on cockpit LCDs and in the pilot’s HMD. The IR spectrums associated with particular aircraft and missile systems are stored within the jet’s algorithms, allowing the jet, in conjunction with other passive and active sensors,[13] to positively identify aircraft and/or inbound missiles from all directions, without limit to the number of targets simultaneously tracked.

Passive coherent location systems and systems with similar capabilities encompass a class of radar systems that detect and track objects by processing reflections from non-cooperative and perhaps unintended emission sources in the environment, such as commercial broadcast and communications signals.[14] With the right equipment and a powerful processor, equipped platforms can determine the location, heading, and speed of aircraft.[15] It is believed that high-end, fourth-generation fighters incorporated some form of PCLS in their systems,[16] and it would be a bad bet to wager against any fifth-generation fighter having this capability.

While each of these active and passive systems can significantly increase a fighter’s advantage, there are drawbacks. Each system may well offer independent methods for finding and identifying target aircraft, but trying to incorporate several separate onboard system displays in a pilot’s cross-check[17] and correlating that information can be a nightmare. Then there are the off-board feeds from aircraft within the formation and systems like Joint Surveillance, Targeting and Reconnaissance System (Joint-STARS); RC-135 Rivet Joint; and the Airborne Warning and Control System (AWACS). This is where sensor fusion becomes critical.

Sensor Fusion.

Coupling the products of off-board feeds with a fighter’s active radar, RWR, IRST, PCLS, and/or other passive detection systems into a single, correlated display can be a godsend for a pilot’s situational awareness. It reduces cockpit cross-checks and delivers the kind of confidence that few fourth-generation platforms incorporate. While many four-plus-generation fighters incorporate sensor fusion, the magic within the F-35’s fusion is the middle-ware that sits between the sensors and the displays. Once any sensor detects a threat, it will move to learn everything it can on the contact by cross-referencing every other onboard, off-board, and overhead sensor to identify (ID) it.

Coupling or fusing the ID signatures from each of the complementary systems into a reliable declaration of friend or foe will significantly reduce pilot workloads. It will also allow the United States and its allies to relax their rules of engagement, freeing pilots to engage enemies earlier and with greater effect. Bringing even some of that fusion into an HMD will give the associated pilot an advantage that will be hard to overmatch.

Those who are not read into its classified faculties can only speculate as to the specific components of and feeds within the F-35’s system of systems, but the experiences of the pilots who were interviewed for this paper are telling. All but three of the 31 pilots interviewed noted “ghosts” (multiple display images for the same threat) and other glitches in sensor fusion, but all 31 expressed high confidence in the software and engineering modifications and improvements that they had witnessed to date. Each pilot also expressed confidence in the individual F-35 system components and the belief that sensor fusion was months away from delivering a remarkable system.

Stealth.

Situational awareness (SA) is a pilot’s real knowledge of the tactical situation around him or her. The quest to maximize your SA while denying an opponent’s is unending. Denying an adversary’s SA of what is happening in the air can be accomplished by using overwhelming numbers, cloaking, and maneuver/deception/subterfuge.

The U.S. gave up on the idea of flooding an opponent’s radar (or air defense system as a whole) with mass numbers of fighters many years ago, choosing instead to use advantages in leading-edge technology and tactics and training to defeat the enemy. If either is accomplished effectively, fighters get nearly unlimited, unchecked moves while their opponents try to discern where they may have gone after the last maneuver they believe they witnessed. This is particularly valuable for multirole platforms tasked with the Weasel mission of suppression of enemy defenses or interdiction in a denied-access (heavily defended) area.

One way to do that is by denying enemy aircraft sensors the opportunity to detect other aircraft. For radar, the detectability factor is measured in square meters of radar cross section (RCS). RCS can be lowered by using special materials, construction, and fabrication techniques, but the process is extraordinarily complicated and expensive, and most stealth systems are very hard to maintain.[18]

It is important to realize that stealth is limited by an aircraft’s initial design. Many fighters require external stores to conduct any combat mission, and the RCS of a clean jet[19] (the number commonly published for aircraft) is not the same RCS that those same jets will have when flying into combat. The RCS for combat-equipped fighters is generally much higher.
 
When it works, stealth is a game changer that will give those that have it a big advantage against the opposition. In mock dogfights, F-35As have repeatedly gone completely undetected by their fourth-generation adversaries, resulting in impressively high kill ratios. When stealth is incorporated into every surface and component on and within a jet, the effects upend the generational chart, rendering every non-stealth platform equivalent to the detection and engagement faculties of (at best) a second-generation fighter.
 
As of this writing, every fourth-generation or four-plus-generation fighter that faces the F-35A may hold the energy and maneuverability of high-end platform, but each will be left with the situational awareness of a GCI-less, second-generation fighter. Over time, GCI capabilities will grow, allowing ground-based radar controllers to vector enemy fighters toward the F-35s, but those pilots will be left to pick up their opponents visually, just as fighters did in the Korean War. They will do that until their own breakthroughs allow the fielding of operational stealth fighters and/or their sensors can be tuned to detect an F-35 in time to be tactically effective. While this technological advantage will likely be with the U.S. and its allies for many years to come, the U.S. cannot allow fighter energy and maneuverability or our tactics to wither.

F-35A Dogfight Performance

Much has been written about the F-35A’s performance in an air combat environment, and while it is important to see how well it stacks up against its fourth-generation predecessors, there are some important facts to keep in mind in any comparison. The F-35A is still under development, and incremental design restrictions limit the G-loading that pilots have to 7.0 Gs. The fly-by-wire design is predicated on software control laws (CLAWs) that act as a governor to limit pilots from max-performing the jet in a way that could cause it to go out of control.[20] For purposes of this paper, those limitations were taken as is, and pilots were asked not to speculate about how the jet will perform when those restrictions are lifted.

The energy and maneuverability (Em) performance of fourth-generation fighters is very often exaggerated by the idea that these fighters fly combat missions in absolutely clean “airshow” configurations. No fourth-generation jet in the U.S. inventory (or any other) goes into combat that way, and most will carry significant external stores (munitions, fuel tanks, and targeting pods) in order to accomplish their mission. When pilots know they are about to enter a dogfight situation requiring the best Em their jets can deliver, they will jettison fuel tanks and unexpended bombs, but almost every pod, rack,[21] or missile rail is permanently affixed,[22] adding significant un-jettisonable weight, drag, and RCS.

If stores and weapons are jettisoned prior to hitting air-to-ground targets, pilots will fail in their primary (multirole) tasking. Even post-jettison, the G-restrictions associated with targeting, forward looking infrared (FLIR), and HTS pods will remain and generally restrict jets to 8.0 Gs or less. While most fighters still perform adequately in those post-jettison configurations, air combat Em performance suffers considerably.

A Direct Comparison.

Thirty-one experienced pilots currently flying the F-35A were asked to rate the energy and maneuvering characteristics of their previous fourth-generation fighters in a combat configuration throughout the dogfighting maneuver envelope in a combat configuration[23] after jettisoning their external stores. They were then asked to rate the performance of the F-35A using the same scale, with fuel and internal munition loads associated with a combat loadout[24] under their current G and CLAW restrictions.[25] The F-35A compared well to the four other fighters (F-15C, F-15E, F-16C, and A-10) in most every regime. (For the total results and responses from the pilots of each respective fighter, see Chart 1.)

Each pilot was then asked to select which fighter he would rather fly in combat if he were to face a clone flying the other jet in six different air-to-air situations. (See Chart 2.) If the pilot selected an F-15C in a short-range setup, for example, he felt he could outperform a pilot of equal abilities in the F-35A. Pilots selected the F-35A 100 percent of the time in beyond-visual-range situations and over 80 percent of dogfighting situations where energy and maneuverability are critical to success.
  
The F-35A was not designed to be an air superiority fighter, but the pilots interviewed conveyed the picture of a jet that will more than hold its own in that environment—even with its current G and maneuver restrictions. In the words of an F-16C Weapons School Graduate and instructor pilot now flying the F-35A, “Even pre-IOC,[26] this jet has exceeded pilot expectations for dissimilar combat. (It is) G-limited now, but even with that, the pedal turns[27] are incredible and deliver a constant 28 degrees/second. When they open up the CLAW, and remove the (7) G-restrictions, this jet will be eye watering.”[28]

Concurrent Acquisition and Program Management

While the F-35A is on the path to becoming an extraordinary multirole fighter, the road has been filled with controversy about its concurrent development acquisition program. Like any other system that relies on technology, fighters have technically viable lifespans, and the clock of utility begins well before the system is ever fielded. A case in point was the air-to-air variant of the Royal Air Force’s Tornado F-3. The technology that went into its design had been proven before the fighter was built. There were no technological leaps, no real risks assumed in the design or acquisition process, and by the time it was fielded in the 1980s, it was virtually obsolete. The F-3 served the RAF for over 20 years, but it was never considered a first-rate fighter or even one that would perform well against the threats of the era.

The requirement for the Joint Strike Fighter (JSF) came about when technology was growing so rapidly that it would be hard to field a jet that was not already approaching obsolescence. DoD agreed on an approach that would combat that challenge by moving to acquire a system while many components of the aircraft were still undergoing some level of research and development. That concurrent development brought with it a level of risk that by its very nature will be present throughout the course of the F-35’s initial fielding.

Component, sensor, and airframe development were (and still are) all happening at the same time, and even small changes in the weight, size, performance, and schedule of any component could affect the weight, size, performance, and schedule of the entire system. While some believe the risk associated with portions of the F-35 concurrent development program equate to acquisition malpractice,[29] the benefits are potentially enormous. The risks of developmental delays and cost overruns were accepted to mitigate an even bigger risk: that the United States would field its own version of the Tornado F-3. The costly risk of delays was known, and only extraordinary leadership could mitigate it. That should have been factored into the whole of the acquisition process, but it wasn’t.

No matter how much legislation is put forth or how many more lines are added to the Federal Acquisition Rules (FARs), any major acquisition program will falter without consistent, competent leadership. The F-35 is the biggest acquisition program in the history of the United States.[30] If concurrent development is coupled with a program of this size, the single biggest requirement for acquisition becomes competent, long-tenured leadership.

In its first 18 years of existence, the JSF/F-35 program office had nine different directors—one every two years—and no matter how bright an individual may be, it takes at least a year to become familiar with the interwoven complexities of such a program.[31] The tenure for the leader most critical to program success was driven more by the expected timing and progression of general officer career paths than it was by the requirements of the biggest acquisition program in history.

It was only after delays and cost overruns aroused the ire of Congress that the Air Force put Lieutenant General Chris Bogdan at the helm of the program. In his four years on point, Bogdan has brought energy, honesty, and the kind of leadership that the program has needed for years. His time on point has not been without controversy, but he has proven that competent, stable leadership in that position is critical, and he has brought the F-35 to the precipice of the kind of technological success for which DoD and industry have been hoping—but at what cost?

Cost and Capability

At full-rate production, every F-35A that leaves the Lockheed-Martin facility in Fort Worth is projected to cost $80 million–$85 million.[32] When one considers the technology and cost of this system, it compares favorably with other recently fielded fighters.

The F35A Lightning II is a fifth-generation fighter conceived in the 1990s. It began concurrent development in the mid-2000s and was declared IOC on August 2, 2016. The jet incorporates full stealth; an AESA radar; internal 360 degree IRST (DAS); an internal IR targeting system (EOTS); and other passive detection systems that are coupled through sensor fusion. In a combat configuration, all munitions, fuel, and targeting sensor and designation capabilities are carried internally, giving it a 9G capability throughout its operational envelope. Estimated full-rate production cost: $80 million–$85 million.

The Eurofighter Typhoon is a four-plus-generation multirole fighter conceived and designed in the early 1980s and introduced into operational service in 2003. The jet itself has a reduced RCS, an AESA radar, internal forward looking IRST, and other passive detection systems that are coupled through sensor fusion. In a combat configuration, the targeting pod, external tanks, and weapons are all carried externally, affecting range, RCS, maximum G, sustained G, and maneuverability. Full-rate production cost: $119 million.[33]

The F-15K Strike Eagle is a four-plus-generation multirole fighter conceived, designed, and initially fielded in the 1980s. This version of the jet is built for (and largely by) South Korea, offers no stealth or reduced RCS, and has an AESA radar and an IRST passive detection system. In a combat configuration, the targeting pod, fuel tanks, and weapons are all carried externally, affecting range, RCS, maximum G, sustained G, and maneuverability. Full-rate production cost: $108 million.[34]

The Rafale B is a four-plus-generation multirole fighter conceived in the 1970s, designed in the 1980s, and initially fielded in the mid-2000s. The jet itself has a reduced RCS and infrared signature. It has been retrofitted with an AESA radar and possesses an internal IRST and other passive detection systems that are coupled through data/sensor fusion. In a combat configuration, the targeting pod, external tanks, and weapons are all carried externally, affecting range, RCS, maximum G, sustained G, and maneuverability. Full-rate production cost: $98 million.[35]

The F-18E Super Hornet Block II is a four-plus-generation multirole fighter based on a design initially conceived in the mid-1990s. The refined aspects of the Block II were designed and fielded in the mid-to-late 2000s and include an AESA radar but no stealth or reduced RCS. In a combat configuration, the targeting pod, external tanks, and weapons are all carried externally, affecting range, RCS, maximum G, sustained G, and maneuverability. Full-rate production cost: $78 million.

The JAS-29C Gripen is a fourth-generation multirole fighter conceived in 1979, designed in the 1980s, and initially fielded in the late 1990s. The jet has a pulse-Doppler radar and offers no stealth or reduced RCS. In a combat configuration, the targeting pod, external tanks, and weapons are all carried externally, affecting range, RCS, maximum G, sustained G, and maneuverability. Full-rate production cost: $69 million.[36]

While the prices of these six fighters can be debated, none of the fourth-generation or four-plus-generation jets can compete with the air-to-ground capabilities of the F-35. In its air-to-ground roles, the F-35A can find, fix, target, and drop on ground threats or targets more quickly and more accurately than any other fighter in the world and without the need for external stores—all in a denied-access (high-threat) environment.

Nor would other fighters fare well if pitted against the F-35A in aerial combat. In an air-to-air BVR situation, the F-35 can locate and target every other combat-configured jet before their pilots become aware of the F-35’s presence. Even if one of the other fighters survived a BVR engagement, the external (un-jettisonable) pods, racks, and rails of each opponent would give a completely clean, combat-configured F-35A a distinct advantage.

The F-35A and the other fighters may be comparably priced, but the F-35A is a full generation ahead of any other multirole fighter nearing production. Nevertheless, there are valid questions that remain:

-How long will this advantage last, and
-How will the United States counter the threat when hostile nations begin to catch up with this leap in technology?

The Fleeting Edge of Technology

For the better part of 30 years and the first three generations of jet fighter aircraft, the United States kept a slight lead on both adversaries and allies in technology and/or tactics. This changed with the advent of stealth, and that technological leap put the U.S. 10–15 years ahead of the threat. Nations that fall behind fight for parity by developing better tactics or fielding greater numbers until they can once again compete technologically.

The enemy is and always will be a thinking being, and even a slight change in dated equipment, coupled with novel tactics, can sometimes be a game changer. The F-117A was developed in the 1970s and entered service in 1983. With it came the age of stealth, and the U.S. Air Force (much as it had in the 1960s in response to the age of the missile) felt that it was all but untouchable. That proved to be valid during Operation Desert Storm in 1991. In 1999, however, the Yugoslavian air defenses were composed of dated systems, one of which was the SA-3 GOA, a SAM system fielded by the Soviet Union in 1961. The Serbs used clever tactics and a nearly 40-year-old system to shoot down an F-117A.

The U.S. Air Force had become complacent when it sent that F-117 into what it believed to be a low-threat environment with no electronic countermeasures support from any other U.S. platform. With no internal jamming system of its own, it relied wholly on stealth for self-protection, and this was not enough. When arrogance takes hold of the technologically advanced, laggard nations can use tactics to level the playing field until they catch up with the technology.

Both the Russians and the Chinese are working to field a viable fifth-generation stealth fighter, but even holding leaked or pilfered classified U.S. data, they are discovering just how challenging stealth can be. Nevertheless, the Air Force F-35A’s superior technology, energy, and maneuverability will give this platform a dominant edge for some time to come. Its stealth is remarkable, and its package of internal electronic countermeasures can detect and electronically blind the newest enemy sensors and SAM and radar systems without highlighting itself to a threat.

What Should Be Done

The United States Air Force will begin the slide back into its own Vietnam (or Yugoslavian) level of ineffectiveness the moment senior leaders and industry representatives use technological dominance to reduce flying time, tactics training, and integrated operations. To prevent that from happening, the Air Force must revitalize its flying hour and tactics training programs to give every fighter pilot the time in the air that he or she needs to dominate the skies when stealth is no longer ours alone.

With this in mind, there are at least four specific actions that Congress and the Department of Defense should take:

-Move forward with the purchase of the full Air Force program of record of 1,763 F-35A fighters. Even now, the sensors and sensor fusion of this platform outclass any other fourth- or fifth-generation fighter currently in the air. Experienced pilots rate the air combat faculties of the F-35 as better than or equal to any other combat-configured fourth-generation fighter in the U.S. inventory—even with the jet’s current restrictions and G-limits.

-Fully fund DoD’s requested baseline budget and the overseas contingency operation budget. The edge that the F-35A brings in the air-to-ground world is incredible, and its price is comparable to those of jets that would never stand a chance against it in the air. The Air Force is currently deferring the purchase/cashing in on F-35As to pay for other critical needs that have gone unfunded or underfunded by Congress. That practice needs to end immediately.

-Continue concurrent development for platforms and systems requiring leading-edge technology. There are risks associated with concurrent development, but the gains and contracting lessons gleaned through the F-35A program are significant and need to be applied to systems that are susceptible to fielding obsolescence.

-Solidify acquisition leadership for all major (Cat I) acquisition programs by mandating four-year tenures for the heads of all program offices. The complexities of any such program are incredibly high, and the only way to deliver excellence on time and within budget to make the program fully mission capable is through extraordinary, stable leadership.

Conclusion

The F-35 is an expensive platform, but it is notably more effective and in many cases cheaper than any other four-plus-generation multirole fighter in the world. No other nation’s fielded fighter would fare well in an engagement against the F-35, and no other multirole fighter currently on the market would survive, much less thrive, in a modern-day high-threat environment. The United States needs to fulfill the F-35A’s complete fielding and look at the concurrent development process that brought it to fruition as a model for similar rapidly growing systems and technologies.

—John Venable, a former F-16C pilot with 3,000 hours of fighter time, is Senior Research Fellow for Defense Policy in the Center for National Defense, of the Kathryn and Shelby Cullom Davis Institute for National Security and Foreign Policy, at The Heritage Foundation.

...somehow I missed this article last year and discovered it by accident?
Anyhow charts and appendices are included in the attached PDF (hopefully it is accessible), maybe it will be of use for others, as well, enjoy!
:)

Re: MORE F-18s instead of F-35C means a shorter fight?

05 Apr 2017, 14:23

mixelflick wrote:At this point, I wouldn't be surprise to see a truncated F-35C purchase. The following is going to play into that..

* Boeing has a reputation for delivering SH's on time and within (or under) budget.

Kudos to Boing.
mixelflick wrote:* LM has a history of cost over-runs and other "issues" with the F-35

Bogdan himself has said the program is doing a great job of tracking schedule and decreasing price per the plan put in place in circa 2010 (ish). When the wing insulation snafu hit, LM came up with a fix, and a schedule to implement it. The repairs cost the government nothing, and it was completed ahead of the schedule. The program is still technically in "development" phase. Discovering problems (and fixing them) is the name of the game. LM seems to be hitting on all cylinders at this point, and for some time.
mixelflick wrote:* OTOH, Green and Red Flag results using the F-35 look pristine
* The Navy (unlike the Air Force) has always practiced a balanced approach to air warfare. Meaning some mix of low observable technology, plenty of jamming and more stand off weapons

So those points would seem to favor additional SH/ASH buys. But it's not that simple. These new birds will likely cost as much as the F-35 today, and perhaps even more than the F-35 as economies of scale manifest. Dunno. Congress has done wackier things.

I can't really speak to the Navy way of doing things, or to Naval leadership's track record when it comes to procurement. They Navy came up with a plan, and set the number of F-35Cs they wanted to purchase. As best I can tell, that number has been fairly rock solid -- neither increasing or decreasing.
mixelflick wrote:One glaring absence is a fleet defense fighter. Sure, the threat of Soviet Bears/Backfire's has evaporated. But look at the South China Sea scenario. It's deja vu all over again. Tough to see either the F-35C or ASH doing justice to that role. The former won't have enough of an air to air loadout (6 AMRAAM's at best), and the latter lacks stealth.

How many F-14's are in the boneyard again ? :)

Your falling into the "stealth" trap that Solomon, Axe et al won't let go. You seem to ding the ASH for lack of stealth, but then ding the F-35 for only 6 AMRAAMs for an air-to-air loadout. Which is it? Do you really need stealth for fleet defense? If not, then surely 8-10 AIM-120's plus a pair of 'winders is a HUGE A-A loadout for fleet defense. If memory serves, the F-14 could not carry anywhere near that many A-A missiles. If the gas bags are developed, putting a pair on an F-35C would give you incredible endurance overhead the fleet for CAP. And it's not like it has incredibly long legs to begin with.

If you do need stealth for fleet defense, well, end of story.

I also feel you are falling into the 3rd/4th gen mindset for fleet defense. How well will an ASH fit into the network of inter-linked systems? For example, if you have a general idea of from where the threat vector will come, F-35C enables you to put a picket destroyer or two along that vector... but don't have them radiate. An overhead network of stealthy F-35Cs act like your distributed networked AWACS capability (with support from E-2Ds -- though you may want them to remain silent if you are going for EMCOM... or you fly the E-2Ds a few hundred miles away from the fleet to give a misleading idea where the fleet is), silently cueing SM-6s from the picket ships. Can the ASH do that?

Where the ASH could help is as a missile truck: two-four ASH's loaded up with max missile load orbiting above the carrier battle group, could act as the missile trucks for two-four stealthy F-35Cs with 4-6 AMRAAMs each. My concern would be loiter time for the ASHs.

IMO, a naval F-22 would have made the best fleet defense interceptor, but that ship sailed long ago. Is the F/A-XX going to be a "fleet defense" fighter?

US Navy issues F/A-XX RFI
By Dave Majumdar 18 April, 2012 SOURCE: Flight International

...
"The intent of this research is to solicit Industry inputs on candidate solutions for CVN [nuclear-powered aircraft carrier] based aircraft to provide air supremacy with a multi-role strike capability in an anti-access/area denied (A2AD) operational environment," the RfI reads. "Primary missions include, but are not limited to, air warfare (AW), strike warfare (STW), surface warfare (SUW), and close air support (CAS)."
...
https://www.flightglobal.com/news/articles/us-navy-issues-fa-xx-rfi-370806/


Geez, does the Navy even know what they want? Sounds like the want the kitchen sink again. Fleet defense wasn't even mentioned (unless it falls under the general "air supremacy" umbrella). It also sounds like what the F-35 already is. So, they want an F-35 to replace the F/A-18 ASH? or an F-35C on steroids?

Trump understands the effect of purchasing power on price. He has already made statements acknowledging or alluding to increased production numbers decreasing the unit price of the F-35. To cut the Navy buy of F-35Cs will affect not only the price of remaining F-35C's, but Bees and Ayes as well.

There is a lot of turmoil and churn right now. I think the Navy would do well to buy F-35Cs rather than F/A-18s right now, but the Cee is more expensive, and the fleet is apparently not ready for the F-35C just yet. So buy more F/A-18s for a few years. But if the Navy cuts its F-35C buy, or the Air Force decreases the F-35A order (ala Venable & Heritage Foundation), the US will be cutting off its nose to spite its face.
Next

Return to advanced search