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ced Martin’s Joint Strike Fighter (JSF) is the latest 5" generation fighter to be incorporated into the

la
¢ same model of the electricy) Networ e L?‘;kh rce, Navy, and Marine services with an operational goal of 2016. Since the legacy platforms the JSF
O tune and validate the autopilot perf(o)‘_k and igh Alr F: lat:e were put into production, there have been significant strides in increasing the maneuverability of
I'Mance Thig w’":nll':- Modern fighters have the ability to maneuver in the post stall region, giving these planes a
::;;iﬁcant advantage in air-to-air combat. JSF continues this trend, using an advanced control system to

rovide maneuverability well into the post stall angle of attack region. The Air Force variant of the JSF, the
ents F-35A, is currently undergoing high angle-of-attack testing at Edwards Air Force Base, CA. With diligent

t of the ongoing research projecr < janning and 2 complete understanding of the system, the Integrated Test Force (ITF) took the F-35A from
EA2 project 11004 “M()DRF;(;)J"'C.t Mode] Drive,, its first high angle-of-attack test point to the aircraft angle-of-attack limit in four missions. This paper
- 130838. (in turn, SUpporteq outlines the efforts by the ITF team to safely and efficiently complete high angle-of-attack (AoA) testing,

starting from the planning process going through flight test execution and exploring the challenges that have
been encountered along the way.
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I. Introduction

INCE World War 1, air-to-air combat has been an integral part of air warfare and from that have arisen
techniques and maneuvers to best take advantage of one’s own fighter to gain the upper hand on the opponent.
These maneuvers have generally fallen within the pre-stall envelope of the aircraft in terms of sustained turn rate,
instantaneous turn rates, and the excess power that the engine produces to gain energy. A low angle of attack allows
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r n,opriatcly. Once the recovery modes have been evaluated and been determined to work satisfactorily,

""".L : noves into departure resistance,

tcsu"g,:qrturc resistance consists of maneuvers designed to stress the AoA and yaw rate limiters with cross coupled
DA ‘high energy states, and airc;_’aﬂ I?tcralflongitqdinal CG locatiopg which could le_ad to out of cont.rol

conditions- Testing will conclude with pilots evaluating handling qualities during operationally representative

aneuvers throughout the high AoA regime.
me Before the testing phases begin, the spin recovery chute (SRC) had to be installed and tested.

inputs

V. Spin Recovery Chute

The SRC is a parachute attached to the aft section of the aircraft via a quadrapod. It is designed to be deployed if

the jet is unable to recover on its own. Once launched, the drag from the chute will stabilize the aircraft in a nose
down, low yaw rate, orientation. The pilot can then jettison to

return to controlled flight. A schematic of the SRC can be seen in
Fig. 4.

Until the recovery modes have been properly tested and verified
to work in the intentional departure phase of testing, the SRC will
remain on. Once the recovery system has been proven, the SRC
will be removed. Since the aerodynamic effects from the SRC
may have some effect on the controllability of the aircraft,, most
of the departure resistance testing will be done with the SRC
removed. Before high angle of attack testing with the SRC, a
ground deployment was performed to ensure the deploy and
release mechanisms worked properly.

As the SRC was being installed and prepared for its functional
check, the test team was simultaneously planning for the initial

¥ Figure 4. Spin Recovery Chute
00® & "B 4 expansion of the high angle-of-attack region. With limited ability
O during a mission to analyze the response of the aircraft, the team
had to have a way to see if the F-35 was roughly matching the expected aerodynamics and control power modeled in

the OBM. Flight Test Continuation Criteria (FTCC) was developed so the engineers in the control room could
determine if the jet was performing within an acceptable margin.

VI. Flight Test Continuation Criteria

FTCC was created from uncertainty analysis run using maneuver simulations of the test blocks at different AoAs
from the Initial High AoA Expansion phase. The blocks consisted of basic mancuvers, designed to explore the
aircraft’s response in both the longitudinal and lateral/directional axes. While post flight analysis can derive the
coefficients and determine if the aircraft was meeting expectations, there needed to be a way to do this real time so
testing could move efficiently and safety. The goal of the analysis was to identify an easily recognizable response of
the aircraft that indicated a mismatch between the OBM and the actual flight characteristics; the most important
being the plane’s pitching moment and the horizontal tail (HT) control power. Simply put, the test team needed a
way to identify if the jet was running short on control power before moving further up in AoA. If it was, the F-35
could be in danger of losing control, departing, and potentially being unable to recover.

The maneuvers established in the test plan to test the HT control power and pitching moment were a trim at the
target AoA and an abrupt push. For the uncertainty analysis, the coefficients Cp; , and € mg Were scaled by about +/-

50% at all the trims up to 50° AOA. Then simulations of the push overs were run using these same uncertainties.
With the data from the trims and push overs created, they could be used to identify responses that would stand out.
For the trim FTCC, comparisons of the normal trim data compared to the decreased HT control power and altered
pitching moment gave way to a continuation criteria that allowed an acceptable delta in HT trim position from
predicted.
The push over criteria was a little bit more difficult to derive as nothing immediately distinguishable fell out in
terms surface responses. This would pose troubles for a quick identification in the control room, hindering efficient
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